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My research is in the area of mathematical logic. I am specifically interested in topics
at the intersection between computability theory and proof theory (reverse mathematics,
constructive mathematics, intuitionistic arithmetic and analysis, type theory). Most of my
work has been in classical reverse mathematics, mainly in the reverse mathematics of order
theory. I am currently interested in some questions about constructive mathematics and in
the interaction bewteen constructive mathematics and reverse mathematics.
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1 Overview of my research

Reverse mathematics [Fri75] is a tool in mathematical logic to assess the computational
strength of theorems in core areas of ordinary mathematics. I regard reverse mathematics
as a formalization of computable mathematics (the same way Aczel’s constructive Zermelo-
Fraenkel set theory is a formalization of constructive mathematics). By computable math-
ematics I mean a whole variety of mathematical investigations that apply recursion theory
(Turing computability theory) and classical logic to the analysis of ordinary mathemat-
ics (e.g., recursive mathematics, computable structure theory, computable analysis). In
reverse mathematics we search for the minimal subsystem of classical second-order arith-
metic needed to establish a given theorem. The most important subsystems of reverse
mathematics are known as the Big Five and have a natural recursion-theoretic interpreta-
tion: they assert the closure under certain operations.

• RCA0 (Recursive Comprehesion Axiom): Every computable set of natural numbers
exists

• WKL0 (Weak Königs Lemma): Every infinite binary tree has an infinite path

• ACA0 (Arithmetical Comprehension Axiom): The Turing jump of every set of natural
numbers exists

• ATR0 (Arithmetical Transfinite Recursion): The transfinite iteration of the Turing
jump of every set of natural numbers exists

• Π1
1-CA0 (Π1

1 Comprehension Axiom): Every set of natural numbers defined by a Π1
1-

formula exists
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Main Theme: Most mathematical theorems are provable in the base system RCA0 or
equivalent over RCA0 to one of the remaining four systems. For instance, the Baire Cat-
egory Theorem BCT for complete separable metric spaces “The intersection of countably
many open dense sets on a complete separable metric space is dense” is provable in RCA0
and the Heine-Borel Covering Lemma HBCL “Every covering of the closed interval [0, 1]
by a sequence of open intervals has a finite subcovering” is equivalent to WKL0 over RCA0.
Therefore, from a reverse mathematics point of view, BCT is computationally weaker than
HBCL.

Simpson [Sim09] classifies hundreds of theorems from all branches of mathematics into
the Big Five catalogue. Although the Big Five seem to exhaust all of mathematics, there
are quite a number of exceptions. The best known is Ramsey’s Theorem for pairs and two
colors (cf. Hirschfeldt [Hir15]).

1.1 Reverse mathematics and order theory

Order theory has broad applications in all areas of mathematics and computer science.
In my past research I have studied a large number of theorems in the context of reverse
mathematics. Here is a brief review.

Linear extensions. Every partial order has a linear extension. This is known as Szpil-
rajn’s Theorem. In [FM12] Marcone and I study certain linearization theorems of the form
“every τ-like partial order has a τ-like linear extension”, for τ ∈ {ω, ω∗, ζ, ω + ω∗}. The
notion of τ-likeness is intended to capture a structural property of the order type τ. Be-
ing ω-like (ω∗-like) means that every element has finitely many predecessors (successors),
while being ζ-like means that every interval is finite. Finally, being ω + ω∗-like means that
every element has either finitely many predecessors or finitely many successors.

We show that some of these statements (linearizability of ω and ζ) are natural equiva-
lents of BΣ0

2, the bounding principle, also known as collection in first-order arithmetic, for
Σ0

2 formulas. For τ = ω + ω∗ we obtain an equivalence with ACA0. We use RCA0 as base
system.

Initial intervals. Partial orders can be studied by looking at their initial intervals
(downward closed sets). In [FM14] Marcone and I show that Bonnet’s theorem “A par-
tial order has no infinite antichains iff every initial interval is a finite union of ideals” is
equivalent to ACA0, and so is the statement that every well-partial order is a finite union of
ideals. Bonnet’s proof is based on a theorem by Erdös and Tarski “A partial order with no
infinite strong antichains has no arbitrarily large finite strong antichains”, where a strong
antichain is a set of pairwise incompatible elements, i.e., elements with no common up-
per bound. We show that these two theorems have indeed the same reverse mathematics
strength ACA0. Bonnet proved that the number of initial intervals is related to density: “A
partial order is scattered (no copy of the rationals) and has no infinite antichains iff it has
countably many initial intervals“. We show that the forward direction is equivalent to
ATR0 and that the inverse direction is provable in WKL0 but not in RCA0. We use RCA0 as
base system.

Scattered partial orders. Recall that a partial orders is scattered if it does not contain a
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copy of the rationals. In my thesis [Fri14] I prove that a well-known theorem by Hausdorff
“The class of scattered linear orders is the least class which contains the empty set, single-
tons and is closed under lexicographic sums along Z” is equivalent to ATR0 over ACA0.
This theorem can be generalized to partial orders [AB99]: The class of scattered partial
orders with no infinite antichains is the least class which contains well-partial orders, and
is closed under reverse partial orders, lexicographic sums, and partial extensions. I prove
that in Π1

2-CA0 one can show that a scattered partial order with no infinite antichains has
a certain representation in terms of well-partial orders. This requires a coding with well-
founded trees similar to the coding of Borel sets in reverse mathematics. The statement is
Π1

3 and by general arguments it cannot imply Π1
2-CA0. No reversals are known.

Well-scattered partial orders. Well-partial orders (wpo) are well-known in order the-
ory and in computer science and admit several characterizations. The most important,
especially for applications in computer science, is in terms of bad sequences. Say that a
sequence (xn)n∈N on a partial order P is bad if xn �P xm for all n < m. One can define
a wpo by saying that it does not contain bad sequences. Cholak, Marcone and Solomon
[CMS04] show that different characterizations for wpos have different reverse mathemat-
ics strength. More precisely, passing from one definition to another requires different
strength. In my thesis I consider well-scattered partial orders (wspo), a generalization
of wpos. One can define a wspo by saying that it does not admit bad Q-sequences, where
a bad Q-sequence on a partial order P is a function f : Q → P such that f (x) �P f (y) for
all x <Q y. Surprisingly, wpos and wspos have similar characterizations. In the case of
wpos, the principle CAC (Chain Antichain), a consequence of Ramsey’s theorem for pairs
and two colors, is needed to prove that some definitions are equivalent. The case of wspos
is similar but not as clear. Erdös and Rado [ER52, Theorem 4] proved that every coloring
f : [Q]2 → 2 admits either an infinite 0-homogeneous set or a dense 1-homogeneous set.
I show that passing from some definitions of wspo to others requires semi-transitive ver-
sions of Erdös and Rado theorem for r colors, denoted by st-ER2

r . It turns out that st-ER2
3

is equivalent to CAC+ st-ER2
2, but the relation between CAC and st-ER2

2 is open. Recall on
the other hand that CAC is equivalent to the semitransitive version of Ramsey’s theorem
for pairs and r colors for any standard number r ≥ 2.

Coloring rationals. Patey and I [FP17] study Erdös and Rado theorem on colorings of
rationals, denoted ER2

2. My conjecture is that ER2
2 is strictly between ACA0 and RT2

2. In
our paper we obtain a separation of ER2

2 from RT2
<∞ under computable reducibility. Given

two Π1
2 statements P and Q, we say that P is computably reducible to Q if every P-instance X0

computes a Q-instance X1 such that for every solution Y to X1, Y⊕X0 computes a solution
to X0. We show that ER2

2 does not computably reduce to RT2
<∞.

Added note. Dzhafarov and Patey [DP17] showed that RT2
2 +WKL0 does not imply

ER2
2. In particular, ER2

2 is strictly stronger than RT2
2. It is still open whether ER2

2 is weaker
than ACA0.

1.2 Reverse mathematics and combinatorial number theory

Brown’s lemma [Bro68]) is a well-known theorem in combinatorial number theory. It as-
serts that piecewise syndetic sets of natural numbers are partition regular, that is whenever
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we partition a piecewise syndetic set into finitely many sets, at least one set must be piece-
wise syndetic. Brown’s lemma BL is closely related to van der Waerden’s theorem VDWT.
The latter asserts that in every partition of the natural numbers into finitely many sets, at
least one set contains arbitrarily long arithmetic progressions.

In [Fri17a] I study the strength of Brown’s lemma and its finite version over the base
system RCA∗0 : this system is to RCA0 as elementary function arithmetic EFA is to primitive
recursive arithmetic PRA. Indeed, RCA∗0 and RCA0 are conservative extensions of EFA
and PRA respectively for Π0

2-formulas. I show that BL is equivalent to induction for Σ0
2

formulas, and that VDWT is equivalent to bounding for Σ0
2 formulas, both over RCA∗0 . On

the other hand, the finite version of Brown’s lemma, which is reminiscent of the Paris-
Harrington principle, is provable in RCA0 but not in RCA∗0 .

1.3 Reverse mathematics and termination analysis

Noetherian spaces. Goubault-Larrecq [GL07] introduced the study of Noetherian spaces
in the context of infinite-state verification problems. Noetherian spaces arise in algebraic
geometry. In fact, the Zariski topology of a Noetherian ring is Noetherian. On the other
hand, they constitute a topological version of well-quasi orders (wqo) and so provide a
more general framework for termination analysis. The relationship with well-quasi orders
is that a quasi-order Q is a wqo if and only if the Alexandroff topology of Q is Noetherian,
where the open sets of the Alexandroff topology are the upward closed sets of Q.

In [FHM+16] Hendtlass, Marcone, Van der Meeren, Shafer and I extend the framework
introduced by Dorais for countable second-countable topological spaces to uncountable
second-countable topological spaces and analyze results by Goubault-Larrecq [GL07] con-
cerning the relationship between a wqo Q and various topologies on P(Q), the power set
of Q. Given a quasi-order Q, one can define two quasi-orders P [(Q) and P ](Q) on P(Q)
by letting

• A ≤[ B iff (∀a ∈ A)(∃b ∈ B)(a ≤Q b);

• A ≤] B iff (∀b ∈ B)(∃a ∈ A)(a ≤Q b).

The ≤[ quasi-order is known in computer science as the Hoare quasi-order. If Q is a wqo
then P•(Q) need not be a wqo, where • ∈ {[, ]}, but the upper topology on P•(Q) is
Noetherian. In general, given a quasi-order Q, the basic closed sets of the upper topology
of Q are the downward closures of finite subsets of Q. Similar results apply to Pf(Q), the
set of finite subsets of Q. We provide the following equivalences with ACA0 over RCA0:

(1) If Q is a wqo, then A(P [
f (Q)) is Noetherian

(2) If Q is a wqo, then U (P [
f (Q)) is Noetherian

(3) If Q is a wqo, then U (P ]
f (Q)) is Noetherian

(4) If Q is a wqo, then U (P [(Q)) is Noetherian

(5) If Q is a wqo, then U (P ](Q)) is Noetherian
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Size-change termination. Lee, Jones and Ben-Amram [LJB01] introduced the notion of
size-change termination for first-order functional programs. Size-change analysis provides
a general method for automated termination proofs and has been applied to higher-order
programs, logic programs, and term rewrite systems. Size-change termination is based on
the notion of size-change graph. Given a first-order functional program P one associates to
every call f → g a bipartite graph which describes the relation between source and target
parameter values.

In [FSY17] Steila, Yokoyama and I analyze the SCT criterion [LJB01, Theorem 4]. The
original proof of the SCT criterion is based on Ramsey’s theorem for pairs. We show that
this is far from optimal and pinpoint the exact reverse mathematics strength of the SCT
criterion to induction for Σ0

2 formulas. To do so, we introduce and study a corollary of
Ramsey’s theorem for pairs, called Triangle Ramsey’s theorem. It states that for any color-
ing of pairs of natural numbers in k colors, there is a color i and some x ∈ N such that the
triangle {x, y, z} is homogeneous for color i for infinitely many pairs y, z. We show that
this corollary of Ramsey’s theorem implies the SCT criterion and that the SCT criterion
implies the Strong Pigeonhole Principle. From these (and some further) results we are able
to conclude that both the SCT criterion and the Triangle Ramsey’s theorem are equivalent
to Σ0

2-induction over RCA0.
In [FSYP17] Pelupessy, Steila, Yokoyama and I continue the study of size-change ter-

mination and analyze the soundness of the SCT method [LJB01, Theorem 1]. In particular,
we prove that a particular instance of the statement “Every SCT program is terminating”
is equivalent to the well-foundedness of ωωω

over RCA0.

2 Current work and future directions

Conservation results in constructive mathematics. In [Fri17b] I study a realizability no-
tion introduced by Goodman [Goo78] to prove that intuitionistic finite-type arithmetic
augmented with the axiom of choice is conservative over first-order intuitionistic arith-
metic HA (Heyting arithmetic). This is a classical result in the metamathematics of con-
structivism. However, it is not quite well-understood. Indeed there are many proofs of
this result, although complete and rigorous proofs are surprisingly rare. In my opinion
Goodman’s proof [Goo78] remains the proof to this day. In [Fri17b] I show how a suit-
able extensional version of Goodman realizability allows to prove that also the addition of
extensionality results in a conservative extension of Heyting arithmetic. This was proved
by Beeson in a rather sketchy way. A recent paper by Benno van den Berg and Lotte van
Slooten [vdBvS17] gives yet another proof of Goodman’s theorem and provides a rigorous
proof of its extensional version.

Goodman’s proof shows that the adding (indices for) partial arithmetical functions
does not increase the strength of HA. In fact, I claim that the theory obtained from HA
by adding a predicate A(a, x, y), whose intended meaning is “the value of the partial func-
tion with index a on input x is well defined and equal to y”, written ax ↓ y, and axioms of
the form

∃a∀x
(
∃yψ(x, y)→ ∃y(ax ↓ y ∧ ψ(x, y)) & ∀y(ax ↓ y→ ψ(x, y))

)
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for all formulas ψ(x1, . . . , xn, y) in the the language of HA, is conservative over HA. Good-
man realizability combines Kleene recursive realizability with forcing, where the forcing
conditions are finite approximations of Skolem partial functions for existential formulas
∃yψ(x1, . . . , xn, y), that is, finite sequences p such that ∀x

(
x ∈ dom(p) → ψ(x, p(x))

)
.

It would be interesting to prove this claim and generalize it to second- and higher-order
arithmetic.

Choice principles in intuitionistic finite-type arithmetic. In intuitionistic set theory
and finite-type arithmetic, one can consider the following choice principles.

Axiom of choice AC:

∀x∃yϕ(x, y)→ ∃ f∀xϕ(x, f (x))

Axiom of relativized dependent choice RDC:

∀x(ϕ(x)→ ∃y(ϕ(y) ∧ ψ(x, y))→ ∀x(ϕ(x)→ ∃(xn)n∈N(x0 = x ∧ ∀nψ(xn, xn+1)))

It is not difficut to see that over classical finite-type arithmetic PAω, AC implies RDC. In-
deed, in a classical setting, RDC is equivalent to the more familiar axiom of dependent
choice DC. It follows from [Koh92] that, over PAω, RDC is weaker than AC. To my knowl-
edge, is still unknown whether in the context of intuitionistic finite-type arithmetic HAω,
AC implies RDC. This goes back to at least [HK66]. Interestingly, over HAω, the axiom
of (countable) choice CAC implies collection principle for all formulas and RDC implies
induction for all formulas. Both proofs use only quantifier-free induction. This nicety sug-
gests an interesting analogy: CAC is to RDC as collection is to induction. It is not difficult
to see that most proof interpretations the realize AC do not use induction, and maybe one
can use this to show that AC does not imply RDC over HAω. Anyway, this has not been
done yet.

Uniformization theorems in reverse mathematics. In recent times there has been an
increasing interest in the reverse mathematics community in so called uniformization the-
orems [HM11, DHS12, Dor14, Fuj15, FK15, Kuy17, HM17]. Most of the results show that,
for an appropriate notion of uniformity, if a theorem P has a certain syntactic form and
is provable in a certain (semi-)constructive formal system Constr, then its uniform ver-
sion is provable in a certain classical formal system Class. The systems under consider-
ations are (semi-)constructive systems based on finite-type arithmetic well-known in the
proof-theory of constructive mathematics and classical systems from reverse mathematics.
Similarly, for appropriate notions of uniform reduction (usually formalizing Weihrauch
reducibility), they show that if P → Q is provable in a certain (semi-)constructive formal
system Constr, then the existence of a uniform reduction of Q to P can be proved in a
certain classical formal system Class.

I would like to further investigate this theme and try to obtain sharper results. Ex-
cept for [Kuy17], the existing results are more or less direct applications of well-known
proof interpretations. Moreover, the notion of uniformity used in systems of finite-type
arithmetic appears to be too strong. In fact, uniformity asks for the existence of a total
functional. For instance, a total functional witnessing the ∀(→ ∃) statement ∀ f (∃x( f x =
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0) → ∃y( f y = 0)) cannot exist provably in RCAω
0 (Feferman’s µ-operator), but obviously

there is a partial computable functional that given f searches for x such that f x = 0. Idea:
investigate finite-type theories for partial functionals.
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